Scallopocalypse

This is a repost of a piece that I loved from im a chordata! urochordata (Jarrett Byrnes‘ eclectic blog of science awesomeness).  For my PhD, I worked on the shorelines of New England and like Jarrett, was always pretty into the transport of carbon (plants and animals) by storms onto the shoreline.  Also note, this is the first step in empirically-dervied ecological research; you go out in nature, you make an observation, this leads to questions that can be answered with field science.  The other (less fun if more academically respectable) way to do ecology – advocated and practiced by our our friends at Dynamic Ecology -  is to read a lot of journal articles, come up with a question (or in most cases, do what you have been told to do by the paper authors), buy a petri dish and do some “ecology” on the bench of your lab.  (Such ecologists do in fact experience nature, for example, they walk from their cars to their office and at times even go for a run in the park).  

Everyone has been pretty shocked by the devastation wreaked by Sandy. Here in New England, we also got a Nor’easter following a few days later. That’s a lot of intense storm action in a short period of time.

So I was quite curious as I ventured out into the field last weekend to see how things looked. I went on a potential field site scouting trip to UMB’s field station in NantucketNantucket of course got a good dose of Sandy, although it largely passed southwest. The Nor’Easter may have been worse.

What I found while just walking about on the shoreline was pretty incredible. It was Scallapocalypse.

Let me include a video here of what one saw looking across the beach so you can get a sense of what was going on.

All over, the scallop grounds had come to shore.

But the huge flux of biomass onto shore was impressive. And it wasn’t just scallops, but a ton of seagrass as well, much of which was matting over fringing salt marshes.

Still, the huge amount of energy and nutrients coming into the shoreline ecosystem driven by storms gave me a lot of pause. I mean, those scallops that weren’t saved did end up in the coastal foodweb. Birds were definitely looking fat and happy, and we’d find piles like this with flocks of birds nearby:

The whole thing really got my brain going, with two big questions

1) So, what is the fate of all of this influx of stuff into the shoreline? How will the influx of energy alter the structure and dymaics of the food web? Will the smothering of the marsh matter? It is winter, when things are slower. How quickly will everything be decomposed? Will the effects be lagged until the springtime? Or will they affect the system now? I think of Gary Polis’s work on how food web structure is shaped by the influx of energy on small islands. I know this is a BIG island, but, still, the point stands, this is a big flux of biomass and nitrogen. And it’s not just plant matter, but animal protein.

2) How will climate change alter the frequency of this subsidy? What would the consequences of a regime with regular small subsidies and occasional big ones versus regular big subsidies be? This stems largely from my thinking about the increase in the size of the ‘largest storm of the year’ in California coastal systems that’s been the basis of my previous work. But, models and analysis from the Knutson group seem to show that, while hurricanes and cyclones in the Atlantic aren’t getting more frequent, the size of each one is getting bigger. So, similar pattern. If small subsidies are coming in every year now due to the occasional passing hurricane or Nor’easter, but the size of those same storms in the future is going to get larger, then having this kind of big Scallapocalypse/subsidy could get more frequent. Particular as northern Atlantic waters get warmer (which they are – Nixon 2004), this could be an interesting and perhaps not so well investigated climate effect – the increased strength of coupling between marine and terrestrial food webs.

Oh, and random 3) What role will invasive algae play in increasing the impacts of storms on the amount of material coming on land? This may lead nowhere, but I noticed a lot of material (not scallops) that had washed on land had the invasive Codium fragile attached to it. I know that subtidal kelps can do this to mussels as well (Witman’s work), but there’s no kelp here. Is Codium becoming a drag (har har) and increasing the energy and nutrient flow from sea to land?

All in all, an interesting trip with a lot to chew on for future research. And a great setting!

Refs
Knutson, T. R., J. L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea, I. Held, J. P. Kossin, A. K. Srivastava, and M. Sugi. 2010. Tropical cyclones and climate change. Nature Climate Change 3:157–163.

Nixon, S. W., S. Granger, B. A. Buckley, M. Lamont, and B. Rowell. 2004. A one hundred and seventeen year coastal water temperature record from Woods Hole, Massachusetts. Estuaries 27:397–404.

Polis, G. A., and S. D. Hurd. 1995. Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proceedings of the National Academy of Sciences, USA 92:4382–4386.

Polis, G. A., W. B. Anderson, and R. D. Holt. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28:289–316.

Witman, J. D., and T. H. Suchanek. 1984. Mussels in Flow – Drag and Dislodgement by Epizoans. Marine Ecology Progress Series 16:259–268.

Leave a Reply